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Abstract—The different integration paths that may arise in the
spectral-domain analysis of leaky modes on open printed-circuit
transmission lines such as microstrip are investigated. There are an
infinite number of paths in the complex plane that may be used to
construct leaky-mode solutions. Not all of the paths are valid math-
ematically. Among the mathematically valid ones, a certain subset
correspond to paths that yield “physically valid” solutions. When
tracking leaky-wave solutions as frequency changes, it is found that
the propagation constants of the leaky modes may go through non-
physical “growing” regions where the attenuation constant is neg-
ative. These nonphysical regions may appear between physically
valid frequency regions, implying that the leaky modes should be
tracked in all frequency regions, including the nonphysical growing
ones, in order to obtain the complete frequency dispersion behavior
of the leaky mode. The migration of the leaky modes into these non-
physical growing regions gives rise to unconventional integration
paths never seen before. Such paths must be used if the dispersion
behavior of the leaky modes is to be plotted for all frequencies.

Index Terms—Leaky modes, printed-circuit lines, spectral-
domain techniques.

I. INTRODUCTION

T HE ISSUE of radiation and leakage on printed-circuit lines
has received much attention [1]–[35] due to undesirable

crosstalk and other spurious effects, as well as for potential
applications to antennas and other devices [33], [34]. Leaky
modes on open guiding structures such as microstrip (structures
without a top cover) can leak into the surface-wave modes of
the substrate structure, as well as into to free space [6]. The dif-
ferent nature of the leakage may be used to classify the leaky
modes as surface-wave leaky modes and spacesurface-wave
leaky modes.

The analysis of leakage phenomena on printed-circuit lines
is usually carried out by solving the electric-field integral equa-
tion (EFIE) in the spectral domain. In the spectral-domain inte-
gration, an arbitrariness is associated with the integration path
used to define the inverse Fourier transform in the transverse
wavenumber plane. In particular, the path may or may not detour
around the various singularities of the spectral-domain Green’s
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Fig. 1. Microstrip line on a lossless isotropic substrate, excited by a delta-gap
voltage source.

function (SDGF), including poles and branch points [12], [15],
[16]. Among all the possible mathematical leaky-wave solutions
arising from these different paths, only some of them are valid
solutions of the boundary-value problem. Here, these solutions
are calledmathematically validsolutions. A subset of the math-
ematically valid solutions are alsophysically validin the sense
that such a leaky mode may appear as a significant part of the
total current spectrum on the line when excited by a practical
source, as shown in Fig. 1. In this paper, a comprehensive clas-
sification scheme is introduced to account for all possible paths
that may be used to obtain leaky-mode solutions. It is briefly
discussed when the paths correspond to mathematically valid
solutions, and when they also correspond to physically valid
solutions.

The evolution of the leaky-mode solutions (and equivalently
of their corresponding integration paths) as frequency changes
is one of the main subjects of this investigation, and this is also
aided by using the longitudinal wavenumber plane. It is shown
that the continuous tracking of leaky-mode solutions may give
rise to new integration paths never before seen. Although the
solutions arising from such paths are not physically valid, the
study of these paths is important since the corresponding solu-
tions may be found in intermediate-frequency regions that are
between the frequency ranges where the solutions are phys-
ically valid. The longitudinal wavenumber complex plane is
found to be a very useful tool for examining the evolution of
the leaky modes with respect to the frequency, since this evolu-
tion is equivalent to tracking the loci of the different leaky-mode
solutions on the different sheets of a Riemann surface.

II. CLASSIFICATION OF INTEGRATION PATHS

This section will briefly overview the spectral-domain
method as applied to leaky-mode solutions on printed-circuit
structures, such as the microstrip line shown in Fig. 1. This will
then be used to introduce the complex longitudinal wavenumber
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Fig. 2. (a) Possible integration path in the complexk -plane. For a given
value of the propagation wavenumberk , this figure shows the location of the
singularities of the SDGF. (b) The same integration path expressed as the sum
of a real axis path plus a clockwise loop between the branch points, together
with two circular paths around the proper poles.

-plane, which is central to the later discussion of the inte-
gration paths in the transverse wavenumber -plane.

In the spectral-domain analysis of propagation on infinite
printed-circuit lines, the EFIE is typically solved by expanding
the unknown current into basis functions and then applying
Galerkin’s method, yielding a determinantal dispersion equa-
tion of the form [26], [16]

(1)

with

(2)

being any of the entries of the Galerkin moment-method matrix,
and being the Fourier transform of theth basis function
for the transverse shape of the surface current on the strip
conductor.

In the transverse wavenumber (integration) plane, branch
points appear at , which create a two-
sheeted Riemann surface for the-plane. Poles appear at

, where is the wavenumber of a guided mode on
the grounded dielectric substrate. (Poles on the top sheet of the

-plane correspond to surface-wave modes of the grounded di-
electric substrate, while poles on the bottom sheet correspond to
improper modes.) Various paths of integration are possible, cor-
responding to choices of detouring around the poles and branch
points in various ways. For example, Fig. 2(a) shows a path that
detours through the branch points and consequently lies partly
on the bottom sheet. The part of the path on the top sheet de-
tours above the poles corresponding to two surface-wave modes
(the and modes). The part of the path on the bottom
sheet detours above the pole corresponding to the mode,
which is assumed to be an improper real mode at this frequency
(all other poles are ignored for simplicity). Fig. 2(b) shows an

equivalent path, which will be used later in the proposed path
classification scheme.

As explained in [23], for a fixed frequency, the func-
tion defines a Riemann surface for thelongitudinal
wavenumber -plane, with an infinite number of branch
points. Each one of the sheets of the Riemann surface is related
to a different integration path in the complex -plane.
The differences among the integration paths come from the
different singularities of the SDGF [25], [27] that may be
detoured around by these integration paths. Specifically, it has
been reported in [23] that, for an open line (without lateral or
top enclosures) such as microstrip, the Riemann surface has the
following three types of branch points.

1) The first type is a branch point at ( de-
notes the free-space wavenumber). There are an infinite
number of sheets associated with this branch point. The
zero sheet, by definition, is the one used to construct so-
lutions that do not leak into space.

2) The second type is a branch point at , where
is the wavenumber of a surface wave on the grounded

dielectric layer. This type of branch point appears only
on the even sheets of the branch point. There are
two sheets associated with these branch points. The
wavenumber of a bound-mode solution that does not
leak into surface waves appears, by definition, on the top
sheet of these branch points.

3) The third type is a branch point at , where
is the wavenumber of a improper mode of the

grounded dielectric layer, which includes both complex
leaky modes and improper real modes (improper modes
with a real propagation wavenumber). This type of
branch point appears only on the odd sheets of the
branch point. There are two sheets associated with these
branch points.

For the bound mode of propagation on the microstrip line, the
wavenumber is purely real, and the solution does not leak ei-
ther into space or into surface waves. The wavenumber for the
bound mode solution lies on the sheet that is referred to as the
“bound-mode sheet.” This sheet, by definition, is the zero sheet
of the branch point and the top sheet of the surface-wave
branch points. For a wavenumber on this sheet, the path of in-
tegration in the -plane is the real axis. A wavenumber on one
of the other sheets corresponds to a leaky-mode solution that
leaks into some combination of space and the surface waves of
the grounded dielectric layer. More details on the branch points,
including a thorough discussion of the properties mentioned
above, may be found in [23].

In general, there are an infinite number of ways in which the
integration path in the -plane may be chosen since there are
an infinite number of ways in which the integration path may de-
tour around the various singularities of the SDGF. In order for a
path to correspond to amathematically validsolution, the cor-
responding wavenumber in the-plane must be continuously
trackable to a point on the bound-mode sheet (corresponding
to a bound-mode solution). To illustrate, Fig. 3 shows how the
path of integration in the -plane evolves as the wavenumber

continuously moves from a point on the bound-mode sheet
to various locations on the Riemann surface. In this figure, two
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Fig. 3. (a) Possible excursions of thek wavenumber solution on thek
Riemann surface, showing various paths that lead from the principle sheet
[corresponding to an integration path(0; 0; 0)] to adjacent sheets. (b)–(e) The
integration pathC in the complexk -plane corresponding to the fourk
wavenumbers shown in (a) (denoted by�).

surface-wave modes ( and ) are assumed to be above
cutoff, while the mode is assumed to be an improper real
mode below cutoff. (The branch point and branch cut are
shown shaded in gray since this branch cut is on a lower sheet of
the branch point.) For simplicity, all other modes are ignored.
The index notation used for the wavenumbers and the paths in
the figure will be explained.

All the paths shown in Fig. 3 are mathematically valid, but
they do not necessarily correspond to solutions that are phys-
ical. A physical mode is one that would appear in the spectrum
for the current excited by a practical source, as shown in Fig. 1.
The issue of physical validity was discussed in [23]. A mathe-
matically valid solution is also a physical solution if it satisfies
the path consistency condition (PCC), meaning that the phase
constant of the mode that is obtained from a particular path of
integration isconsistentwith the path. For example, a modal so-
lution obtained from the path shown in Fig. 3(c) will be physical
if the phase constant is less than that of the surface wave,
but greater than and also greater than the wavenumber of the

surface wave. More details may be found in [23].
Clearly, the paths can get rather complicated, when all

possibilities are allowed (mathematically valid or not, and
physically valid or not). A systematic way of classifying all
the possible paths is desirable. To aid in the classification,
it is first noted that an arbitrary integration path can be
expressed as the superposition of the following three parts
[22], [23]:

1) path running along the entire real axis;
2) round-trip path (or loop) between the branch points of

the SDGF, where each part of the loop is located on
a different sheet;

3) set of paths encircling the proper or improper poles
of the SDGF.

An example of this type of deformation is shown in
Fig. 2(a) and (b), where (b) shows the different paths that
constitute the original path in (a).

In light of the above consideration, the integration paths will
be classified using three indexes, according to the following
scheme.

1) The first index refers to the number of loops between the
branch points, defined in the sense shown in Fig. 2(b)
(counterclockwise if the proper part of the loop path is
on top). For the example shown in Fig. 2(a), this index
would be 1.

2) The second index is actually a list, indicating those proper
surface-wave poles that are encircled, in the sense shown
in Fig. 2(b). (The poles in the upper half-plane are en-
circled in the clockwise sense.) For the example shown
in Fig. 2(a), this list would be ( , ). An encir-
clement in the counterclockwise sense would be denoted
in this scheme by using a negative sign in front of the
corresponding pole in the list. Multiple encirclements are
denoted with an integer in front of the pole. For example,
an index list that is ( , ) would indicate that the

pole is encircled twice in the clockwise sense. (The
possibilities of negative or multiple encirclements do not
correspond to mathematically valid paths, but such possi-
bilities are allowed in the classification scheme to main-
tain generality.)

3) The third index is another list that indicates the improper
poles (leaky-mode poles and improper-real mode poles)
that are encircled. A positive encirclement is again de-
fined by a clockwise integration around the pole for the
pole that is in the upper half-plane. For an improper sur-
face-wave pole with a real phase constant, this uniquely
defines the integration path. For a complex leaky-mode
pole, the situation is slightly more complicated since such
a pole does not have to lie on the hyperbolic continuation
of the branch-cut contour. To illustrate, consider the sit-
uation shown in Fig. 2(b). The leaky-mode pole in the
first quadrant may lie to the right-hand side of the im-
proper part of the loop path or to the left-hand side of it.
If the pole lies to the right-hand side of this part of the
loop path, and below the hyperbolic branch-cut contour,
the classification scheme is the same as for the improper
real modes. If the leaky-mode pole lies above the hyper-
bolic branch-cut contour, the classification scheme is also
the same. If the leaky-mode pole lies to the left-hand side
of the improper part of the loop path, and below the hyper-
bolic branch-cut contour, the integer in front of the name
of the pole in the index is taken to be the number of clock-
wise residue loops around the pole minus one. For the ex-
ample shown in Fig. 2(b), this third index list would be
null since the improper pole is located to the right-hand
side of the improper part of the loop path, with no residue
paths around the pole.
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To illustrate the above classification scheme, the integration
path shown in Fig. 2(a) is denoted as , . That
is, comprises the real axis, one counterclockwise loop be-
tween the branch points, circle paths around the poles on the
top sheet of the -plane associated with the wavenumbers of
the and surface-wave modes of the substrate, each
circled once in the clockwise sense, and no circle paths around
the improper poles associated with the (and the other) im-
proper substrate modes. Every point on theRiemann surface
corresponds to a particular path of integration in the-plane,
which is designated using this classification scheme.

The above classification scheme was illustrated for the case
when the poles and branch points are located in the first and
third quadrants (as will be the case for physical leaky-mode so-
lutions). For nonphysical growing leaky modes (with a negative
attenuation constant), the poles and branch points will be lo-
cated in the second and fourth quadrants. In this case, the path
classification is obtained by allowing all the pole and branch
point singularities in the -plane to cross the imaginary axis,
and then using the classification scheme as outlined above. This
maintains the same path classification when the wavenumber

crosses the real axis in the -plane without crossing any
branch cuts.

The same classification scheme used for the paths can then
be used to denote the particular sheet of the Riemann surface
that the longitudinal wavenumber is on. In Fig. 3, both the
wavenumbers and the paths have been labeled using this clas-
sification scheme. In this scheme, the bound-mode sheet is de-
noted as .

III. D ISCUSSION OFMODE SPLITTING

One interesting aspect of modal evolution with frequency is
the mode splitting that typically occurs on a lossless structure
when the solution merges with the conjugate solution,
resulting in a pair of improper-real solutions. Knowing when
mode splitting will occur aids in the understanding of the fre-
quency evolution of the wavenumber.

A necessary condition for mode splitting to occur is that the
solution must approach the real axis in the-plane. The
wavenumber is always a valid solution for a lossless struc-
ture and, hence, both and must approach the same set of
coordinates as approaches the real axis. However, this does
not necessarily mean that the and solutions must evolve
into a pair of improper real solutions when approaches the
real axis. This evolution will occur when the and solutions
meet on the Riemann surface. This, in turn, implies that the
path of integration in the -plane for the solution must con-
tinuously evolve into the path of integration for thesolution
as the wavenumber crosses the real axis. The integration path
for the solution is simply the complex conjugate of the path
used for the solution. Hence, mode splitting will occur if the
integration path changes into the corresponding conjugate path
as crosses the real axis on the Riemann surface.

To illustrate this, consider first a leaky-mode solution that
leaks into only the surface wave, corresponding to a path

. For such a leaky-mode solution with located
in the fourth quadrant [point #1 in Fig. 4(a)], the path of the
integration is as shown in Fig. 4(b). If at point #1 crosses

Fig. 4. (a) Trajectory in thek -plane, showing the wavenumberk crossing
the real axis, moving from points #1 to #2. The wavenumber stays on the sheet
that corresponds to the integration path(0; TM ; 0) in thek -plane. (b) and
(c) Integration pathsC in thek -plane corresponding tok wavenumbers at
points #1 and #2 in thek -plane, respectively.

Fig. 5. (a) Trajectory in thek -plane, showing the wavenumberk crossing
the real axis, moving from points #1 to #2. The wavenumber stays on the sheet
that corresponds to the integration path(1;TM ; 0). (b) and (c) Integration
pathsC in thek -plane corresponding tok wavenumbers at points #1 and #2
in thek -plane, respectively.

the real axis to the right-hand side of the branch point
to reach point #2, the branch point and pole in the-plane
cross the imaginary axis, causing the path to evolve into the one
shown in Fig. 4(c). This path is the conjugate path to the one
shown in Fig. 4(b). Hence, if a surface-wave leaky solution
approaches the real axis at a point to the right-hand side of the

branch point in the -plane, mode splitting will occur. By
similar reasoning, it can be shown that if the surface-wave
leaky solution approaches the real axis to the left-hand side of
the branch point, no mode splitting will occur.

Extending the reasoning, the general conclusion is that a
leaky mode that leaks into a finite number of surface-wave
modes will exhibit mode splitting if the wavenumber
approaches the real axis to the right-hand side of all the
surface-wave branch points corresponding to the leakage.

Next, consider the case of a mode that leaks into both space
and into the surface wave, corresponding to the path

. The point labeled #1 in Fig. 5(a) is on the lower
sheet of the branch point, and corresponds to the path
shown in Fig. 5(b). If point #1 crosses the real axis to the
right-hand side of all the branch points, the path evolves into
that shown in Fig. 5(c). This path is not the conjugate to the one
shown in Fig. 5(b). Hence, a solution that leaks into space and
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into the surface wave will not encounter mode splitting
as the solution approaches the realaxis to the right-hand
side of the branch points. By following similar reasoning, it
is also seen that a solution that leaks into both space and the

surface wave does not encounter mode splitting when the
solution approaches the real axis to the left-hand side of any of
the branch points. Hence, such a mode never encounters mode
splitting.

In summary, mode splitting only occurs for a leaky-mode so-
lution that leaks only into surface waves, and then only when
the wavenumber approaches the real axis to the right-hand
side of all the corresponding branch points. This behavior will
be observed in the results presented in Section IV.

IV. EVOLUTION OF PATHS WITH FREQUENCY

In the preceding sections, the integration paths in the
-plane were discussed, and it was shown how the path of

integration continuously evolves as the wavenumbermoves
on a Riemann surface (which may, for example, correspond to
changing frequency). Also, a discussion of when mode splitting
may occur as the wavenumber approaches the real axis
was given. These points will now be illustrated by showing
results for a practical microstrip line. In addition to illustrating
the above points, the results will show that a continuous
tracking of the wavenumber with frequency may require that
the wavenumber crosses the real axis to enter a nonphysical
“growing” region (the imaginary part of is positive) during
part of the frequency range. This leads to new and interesting
paths of integration never seen before. Such paths must be used
if the frequency behavior of the leaky mode is to be tracked
continuously over the complete frequency range.

Results will be shown for a microstrip line on an isotropic
substrate, having the parameters mm, mm and

. This particular structure, with a high permittivity
and a fairly wide strip, is chosen because it illustrates all of the
aspects discussed previously, over a practical frequency range.
Not every structure will exhibit all of these same effects over
a given frequency range. Nevertheless, the general conclusions
reached by studying this structure are expected to be valid for
other structures, in the sense of demonstrating what types of path
evolutions may occur as the frequency changes.

The normalized phase constants for the funda-
mental bound mode and two leaky modes are shown in
Fig. 6. This figure also shows the dispersion curves for the
first two surface-wave modes of the grounded substrate (for
frequencies below 19.2 GHz the surface-wave mode is
an improper-real mode). The light gray line corresponds to a
leaky-mode solution that leaks into space and into the
surface-wave mode [obtained by using path ]. The
dark gray line corresponds to a leaky-mode solution that leaks
into only the surface-wave mode [corresponding to a
path ]. According to the PCC, the dominant bound
mode, arising from path , is physically valid for the
entire frequency range. The solution is physically
valid only at those frequencies where ,
i.e., approximately between 13–14 GHz and also between
18–26.2 GHz. Above 26.2 GHz, , but the poles

Fig. 6. Normalized phase constants (normalized byk ) for the fundamental
bound mode and two leaky modes of a microstrip withh = 1:27 mm,w =
4 mm, � = 10:2. One leaky mode leaks only into theTM surface-wave
mode of the grounded substrate. This mode is obtained by using the integration
path(0;TM ; 0). The other leaky mode leaks into space as well as into the
TM surface wave. The corresponding integration path is(1;TM ; 0).

associated with the surface-wave mode are not detoured
around by the integration path in the -plane;
hence, this solution violates the PCC and, therefore, loses
physical validity in this frequency region.

The only physical region for the solution is be-
tween 14.8–18 GHz, where . It is observed that there
is a frequency range (from 15.2 to 18 GHz) where the phase
constants of the two leaky modes almost coincide. It might be
assumed that this would be a region of strong coupling between
the two leaky modes. However, the two leaky-wave solutions
are on different sheets of the Riemann surface and, furthermore,
only the solution is physically valid in this region.
Hence, the usual mode coupling that occurs as the phase con-
stants of two different modes approach each other is not found
here.

The normalized phase and attenuation constants of the
solution are shown in Fig. 7.

It is interesting to note in Fig. 7(b) that, between approx-
imately 17–18 GHz, the attenuation constant(with

) of this mode is negative. Clearly, a “growing” mode
with a positive phase constant and a negative attenuation con-
stant is not physical. Nevertheless, it is important to track the so-
lution in this “anomalous” region because after this region, the

solution is once again physically valid according to
the PCC.

Insight into the frequency evolution of this mode is provided
by examining the locus of the wavenumber solution in the
complex -plane, shown in Fig. 8. It is observed that there
is a mode-splitting point at approximately 11.92 GHz when
the wavenumbers of the two improper real modes meet on
the real axis to the right-hand side of the branch point
( at this frequency). After the splitting point,
a complex solution and its complex conjugate
emerge perpendicularly. The solution in the fourth quadrant of
the -plane travels to the left-hand side of the quadrant until
it crosses the branch cuts (not shown) on the real axis from
both the and branch points at approximately 17 GHz.
After this crossing, the solution goes to the first quadrant,
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(a)

(b)

Fig. 7. (a) Normalized phase constant and (b) normalized attenuation constant
for the surface-leaky mode in Fig. 6 obtained by using the integration path
(0;TM ; 0).

Fig. 8. Locus of thek wavenumber in the complexk -plane for the
surface-wave leaky solution between 11–30 GHz. This figure shows the
locus of both the complex leaky-mode solution (black line) and the complex
conjugate solution (gray line) obtained by using the conjugate integration path.

entering the ( ; ) sheet of the Riemann surface,
corresponding to the path ( ; ) in the -plane.
The path is shown in Fig. 9. (The designation for this path is
obtained by first allowing the poles and branch points to cross
the imaginary axis, and then examining the circle paths around
the poles, as discussed previously in Section II.) The gray line
in Fig. 8, corresponding to the locus of the complex conjugate
solution, begins on the sheet and crosses the
branch cuts to enter the sheet in the fourth quadrant.
Therefore, the loci of the original solution and its complex
conjugate do not meet at 17 GHz, and there is no splitting
point at this frequency. This behavior is as expected from the
discussion in the previous section.

After an small excursion of the solutions on these sheets, they
come back to the ; 0) sheet at approximately 18 GHz.

Fig. 9. Integration pathC in thek -plane corresponding to ak wavenumber
located in the first quadrant of thek -plane on the first upper sheet of the
k branch point [the sheet designated as (�1; �TM ; TE )]. This path
corresponds to the frequency range from 17 to 18 GHz in Fig. 8.

(a)

(b)

Fig. 10. (a) Normalized phase constant and (b) normalized attenuation
constant for the space+ surface-wave leaky mode in Fig. 6, obtained by using
the integration path(1;TM ; 0).

From this frequency up to 30 GHz, the solutions remain on this
sheet.

The normalized phase and attenuation plots for the
solution are shown in Fig. 10. It is again observed

in Fig. 10(b) that the attenuation constant takes negative values
over the range shown; this time within two different frequency
ranges between 18.035–18.375 GHz and 18.845–23.25 GHz.
The locus of the solution in the -plane is shown in Fig. 11
(the complex conjugate solution is not shown since, as dis-
cussed in the previous section, this solution never merges with
the original solution to form mode splitting). Fig. 11 shows
how the wavenumber starts in the fourth quadrant on the
sheet that corresponds to the path and travels in
this quadrant until it approaches the branch point. The
corresponding integration path in the-plane associated with
this excursion in the -plane is shown in Fig. 12(a). This
figure also shows the following singularities of the SDGF in
the -plane: branch points associated with, poles on the top
(proper) sheet associated with the surface-wave mode,
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Fig. 11. Locus of thek wavenumber in the complexk -plane for the space
+ surface-wave leaky solution between 10–30 GHz.

Fig. 12. Integration pathsC in the k -plane that are used to track
the space+ surface-wave leaky solution in Fig. 11 in the following
frequency regions. (a) Frequencies below 18.035 GHz. (b) Frequencies
between 18.035–18.375 GHz. (c) Frequencies between 18.375–18.845 GHz.
(d) Frequencies between 18.845–19.2 GHz. (e) Frequencies between
19.2–23.25 GHz. (f) Frequencies above 23.25 GHz.

and poles on the bottom (improper) sheet associated with the
below-cutoff surface-wave mode (which is actually an
improper surface-wave mode).

The magnified inset of Fig. 11 shows how, after approaching
the branch point at , the wavenumber moves to the first quad-
rant (negative value of the attenuation constant) after crossing
the real axis just to right-hand side of at approximately
18.035 GHz. (The inset sketch in Fig. 12(b) shows where the
wavenumber crosses the real axis in relation to the branch
points.) As the wavenumber crosses the real axis, it crosses
the branch cut associated with the improper surface-wave
mode. No branch cuts associated with the surface-wave

mode are crossed because branch points associated with proper
surface-wave modes do not appear on the lower sheet of the
branch point, as mentioned previously [23]. After crosses
the real axis at 18.035 GHz, the branch points in the-plane
cross the imaginary axis, while the poles on the top sheet
and the poles on the bottom sheet of the-plane cross
the real axis. After crosses the real axis, the corresponding
integration path in the -plane is now that shown in Fig. 12(b),
which is classified as path .

It should be noted that as frequency increases, the sur-
face-wave mode is approaching its cutoff frequency (19.2 GHz)
and, therefore, the poles in the -plane come close to
the branch points. This will result in an interesting transition
in paths, as seen presently.

At 18.375 GHz, the wavenumber again crosses the real
axis and the branch cut, and moves back to the fourth quad-
rant of the -plane in the sheet, where it stays until
it approaches in an upwards direction the real axis once again
at approximately 18.845 GHz. Between 18.375–18.845 GHz the
integration path is shown in Fig. 12(c). At 18.845 GHz, the
branch point on the real axis in the -plane has moved suf-
ficiently far to the left-hand side (toward the branch point)
that it is now located on the real axis to the left-hand side of the
point where the wavenumber is approaching the real axis at
18.845 GHz. This implies that the wavenumber now does not
cross this branch cut and, hence, the improper poles cross
the imaginary axis in the -plane. Therefore, the path evolves
from that shown in Fig. 12(c) to that shown in Fig. 12(d) as
the frequency increases past 18.845 GHz. The path shown in
Fig. 12(d) is classified as .

The integration path in the -plane remains the same until
the cutoff frequency of the surface-wave mode is reached
(19.2 GHz), at which point the improper poles in the

-plane coalesce with the branch points and then reemerge
as proper surface-wave poles. As these poles reemerge to
the proper sheet, they cross the improper part of the loop,
adding other residue path contributions that null their previous
improper residue paths. The path is then as shown in Fig. 12(e),
which is classified as .

At 23.25 GHz, the solution crosses the real axis again, to
the left-hand side of the and branch points (although
their corresponding branch cuts are not crossed since they are
not on the same sheet as the wavenumber). Both theand

poles consequently cross the real axis, resulting in the path
shown in Fig. 12(f), which remains classified as path

.

V. CONCLUSIONS

Many different integration paths are possible in the spectral-
domain analysis of leaky-mode propagation on open printed-
circuit structures such as microstrip. A classification scheme for
characterizing these paths has been proposed here. Out of all the
possible paths, a certain subset of these paths are mathematically
valid in the sense that the resulting modal solution satisfies the
boundary conditions at the strip conductor, as well as Maxwell’s
equations. A subset of these mathematically valid paths are also
physically valid, yielding modal solutions that are physical in
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the sense that such a leaky-mode solution would be physically
present to an appreciable degree in the total spectrum of current
that is produced on the line by a practical source.

The complex longitudinal wavenumber plane (the-plane)
provides insights about the mathematical and physical validity
of the paths. In particular, a mathematically valid path is one that
comes from a continuous evolution of the real-axis path (the one
that is used to obtain bound-mode solutions) as the wavenumber

moves continuously on a Riemann surface. A path that is also
physically valid is one that satisfies a PCC.

The concept of the Riemann surface for the longitudinal
wavenumber allows for other important conclusions re-
garding the frequency behavior of the wavenumber. It
was shown that mode splitting sometimes occurs when the
wavenumber approaches the real axis (where a complex leaky
solution meets a complex conjugate solution, and the two
solutions split apart as two improper-real solutions). In other
situations, mode splitting does not occur. The use of the
Riemann surface allows for a prediction of when mode splitting
will occur. It was shown that mode splitting occurs when
the complex leaky-mode solution and its complex conjugate
solution meet on the Riemann surface.

Another interesting use of the -plane is to provide insight
into the evolution of the spectral-domain integration paths as
frequency changes. It was shown that a continuous tracking of
the wavenumber may require that the wavenumber enter a
nonphysical “growing” region of the complex plane, where the
leaky-mode solution has a negative attenuation constant. Al-
though such solutions are completely nonphysical, frequency
regions exhibiting growing behavior may appear between phys-
ical frequency regions, making it necessary to track the solution
through the nonphysical growing regions if the complete dis-
persion behavior of the line is to be obtained. The tracking of
the solution into these nonphysical growing regions gives rise
to new paths of integrations never before observed.
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