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Investigation of Integration Paths in the
Spectral-Domain Analysis of Leaky
Modes on Printed Circuit Lines

Francisco Mesaviember, IEEEand David R. Jacksorrellow, IEEE

Abstract—The different integration paths that may arise in the
spectral-domain analysis of leaky modes on open printed-circuit
transmission lines such as microstrip are investigated. There are an
infinite number of paths in the complex plane that may be used to
construct leaky-mode solutions. Not all of the paths are valid math-
ematically. Among the mathematically valid ones, a certain subset
correspond to paths that yield “physically valid” solutions. When
tracking leaky-wave solutions as frequency changes, it is found that
the propagation constants of the leaky modes may go through non-
physical “growing” regions where the attenuation constant is neg-
ative. These nonphysical regions may appear between physically
valid frequency regions, implying that the leaky modes should be

trackedin lefrtequt?tnt_:ytrﬁgions, ilruilufding the ”%ﬂphySiPa' %rot\]/vin_g function (SDGF), including poles and branch points [12], [15],
ones, In order to optain the complete frequency dispersion benavior . . .
ofthé leaky mode. The migratioFrll ofthe I?eaky n%odeps into these non- [151.' Among allthe pQSS|bIe mathematical leaky-wave solutlor!s
physical growing regions gives rise to unconventional integration rising from these different paths, only some of them are valid
paths never seen before. Such paths must be used if the dispersionsolutions of the boundary-value problem. Here, these solutions
behavior of the leaky modes is to be plotted for all frequencies. are callednathematically valigolutions. A subset of the math-
Index Terms—Leaky modes, printed-circuit lines, spectral- €matically valid solutions are alghysically validin the sense
domain techniques. that such a leaky mode may appear as a significant part of the
total current spectrum on the line when excited by a practical
source, as shown in Fig. 1. In this paper, a comprehensive clas-
sification scheme is introduced to account for all possible paths
HE ISSUE of radiation and leakage on printed-circuit linethat may be used to obtain leaky-mode solutions. It is briefly
has received much attention [1]-[35] due to undesirabtiscussed when the paths correspond to mathematically valid
crosstalk and other spurious effects, as well as for potentgdiutions, and when they also correspond to physically valid
applications to antennas and other devices [33], [34]. Leakplutions.
modes on open guiding structures such as microstrip (structure¥he evolution of the leaky-mode solutions (and equivalently
without a top cover) can leak into the surface-wave modes aff their corresponding integration paths) as frequency changes
the substrate structure, as well as into to free space [6]. The difone of the main subjects of this investigation, and this is also
ferent nature of the leakage may be used to classify the leakged by using the longitudinal wavenumber plane. It is shown
modes as surface-wave leaky modes and spasarface-wave that the continuous tracking of leaky-mode solutions may give
leaky modes. rise to new integration paths never before seen. Although the
The analysis of leakage phenomena on printed-circuit lingslutions arising from such paths are not physically valid, the
is usually carried out by solving the electric-field integral equastudy of these paths is important since the corresponding solu-
tion (EFIE) in the spectral domain. In the spectral-domain intiens may be found in intermediate-frequency regions that are
gration, an arbitrariness is associated with the integration pdtitween the frequency ranges where the solutions are phys-
used to define the inverse Fourier transform in the transveiisally valid. The longitudinal wavenumber complex plane is
wavenumber plane. In particular, the path may or may not detdaund to be a very useful tool for examining the evolution of
around the various singularities of the spectral-domain Greettfge leaky modes with respect to the frequency, since this evolu-
tion is equivalent to tracking the loci of the different leaky-mode
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(a) Im(k.) equivalent path, which will be used later in the proposed path
classification scheme.

As explained in [23], for a fixed frequency, the func-
tion F'(k.) defines a Riemann surface for thengitudinal
Re(k,) wavenumberk_.-plane, with an infinite number of branch
points. Each one of the sheets of the Riemann surface is related
to a differentC,, integration path in the complek,-plane.

The differences among the integration paths come from the
different singularities of the SDGF [25], [27] that may be
detoured around by these integration paths. Specifically, it has
been reported in [23] that, for an open line (without lateral or
top enclosures) such as microstrip, the Riemann surface has the
following three types of branch points.

s Re(k,) 1) The first type is a branch point & = =k (ko de-

notes the free-space wavenumber). There are an infinite
number of sheets associated with this branch point. The
zero sheet, by definition, is the one used to construct so-

Fig. 2. (a) Possible integration path in the complexplane. For a given lutions that do not leak into Space.
value of the propagation wavenumber, this figure shows the location of the 2) The second type is a branch pointiat= +k.,,, where

singularities of the SDGF. (b) The same integration path expressed as the sum  k, iS the wavenumber of a surface wave on the grounded

of a real axis path plus a clockwise loop between the branch points, together  djelectric layer. This type of branch point appears only

with two circular paths around the proper poles. on the even sheets of thie, branch point. There are
two sheets associated with these branch points. The

(k.)-plane, which is central to the later discussion of the inte- ~ wavenumber of a bound-mode solution that does not

gration paths in the transverse wavenuntign-plane. leak into surface waves appears, by definition, on the top

In the spectral-domain analysis of propagation on infinite sheet of these branch points.

printed-circuit lines, the EFIE is typically solved by expanding 3) The third type is a branch point &f = £k, where

the unknown current into basis functions and then applying kimp 1S the wavenumber of a improper mode of the

Galerkin’s method, yielding a determinantal dispersion equa-  grounded dielectric layer, which includes both complex

tion of the form [26], [16] leaky modes and improper real modes (improper modes
with a real propagation wavenumber). This type of
F(k.) = det [/ T (ki ki2) dkiz | = 0O 1) branch po_int appears only on the odd sheets of_lozhe
c, branch point. There are two sheets associated with these

branch points.

For the bound mode of propagation on the microstrip line, the
wavenumberk.. is purely real, and the solution does not leak ei-
ther into space or into surface waves. The wavenumber for the
bound mode solution lies on the sheet that is referred to as the

being any of the entries of the Galerkin moment-method matmfjound-mode sheet.” This sheet, by definition, is the zero sheet

andjn(kw) being the Fourier transform of theh basis function .
. of the kg branch point and the top sheet of the surface-wave
for the transverse shape of the surface curdém} on the strip ' ; .
conductor. branch points. For a Wa_venumber on this sheet, the path of in-
In the transverse wavenumbey (integration) plane, branch tigtrhatloThlnrthﬁcm—lilaner:s therr](cajal fX'S'IA v&/avrﬁngmbelr c:|n ﬂf‘ ¢
points appear ak,;, = +(k3 — k2)1/2, which create a two- IO ke'ot er sheets qu et§po fS oa eadﬁ ° efsou 0 af
sheeted Riemann surface for fyeplane. Poles appearfaf, = eaxs into some combination Of Space and the surtace waves o
ﬁhe grounded dielectric layer. More details on the branch points,

+(k2—k2)'/?, wherek, is the wavenumber of a guided mode o i h h di ion of th . ioned
the grounded dielectric substrate. (Poles on the top sheet oflf?fa“ ing a thorough discussion of the properties mentione

k.-plane correspond to surface-wave modes of the grounded"i‘]l?pve’ may be found in [23].

electric substrate, while poles on the bottom sheet correspond t" general, there are an infinite number of ways in which the
improper modes.) Various paths of integration are possible, céitegration path in thé.-plane may be chosen since there are
responding to choices of detouring around the poles and brargghinfinite number of ways in which the integration path may de-
points in various ways. For example, Fig. 2(a) shows a path tii@ur around the various singularities of the SDGF. In order for a
detours through the branch points and consequently lies pafBth to correspond tomathematically valicsolution, the cor-

on the bottom sheet. The part of the path on the top sheet dgsponding wavenumber in thg-plane must be continuously
tours above the poles corresponding to two surface-wave moti@skable to a point on the bound-mode sheet (corresponding
(theTM, andTE; modes). The part of the path on the bottonto a bound-mode solution). To illustrate, Fig. 3 shows how the
sheet detours above the pole corresponding talthie mode, path of integration in thé,-plane evolves as the wavenumber
which is assumed to be an improper real mode at this frequergycontinuously moves from a point on the bound-mode sheet
(all other poles are ignored for simplicity). Fig. 2(b) shows ato various locations on the Riemann surface. In this figure, two

with

]-_‘rnn(kaﬂ kz) = jrn(_kac) . C(kan kz) . jn(kw) (2)
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path running along the entire real axis;
round-trip path (or loop) between the branch points of

the SDGF, where each part of the loop is located on

a different sheet;
set of paths encircling the proper or improper poles
of the SDGF.

An example of this type of deformation is shown in

Fig. 2(a) and (b), where (b) shows the different paths that

Im(k,) (c) Jmik)

TE,
™,
™,

C(0;0;0) ‘Q(O;TMO;O)

NS
£
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(d) JImk,) 2)
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Fig. 3. (a) Possible excursions of tthie wavenumber solution on thk,
Riemann surface, showing various paths that lead from the principle sheet
[corresponding to an integration paf; 0; 0)] to adjacent sheets. (b)—(e) The
integration pathC,, in the complexk,.-plane corresponding to the four.
wavenumbers shown in (a) (denoted Y.

surface-wave moded'M, andTE;) are assumed to be above )
cutoff, while theTM; mode is assumed to be an improper real
mode below cutoff. (Th&'M; branch point and branch cut are
shown shaded in gray since this branch cut is on a lower sheet of
thekq branch point.) For simplicity, all other modes are ignored.
The index notation used for the wavenumbers and the paths in
the figure will be explained.

All the paths shown in Fig. 3 are mathematically valid, but
they do not necessarily correspond to solutions that are phys-
ical. A physical mode is one that would appear in the spectrum
for the current excited by a practical source, as shown in Fig. 1.
The issue of physical validity was discussed in [23]. A mathe-
matically valid solution is also a physical solution if it satisfies
the path consistency condition (PCC), meaning that the phase
constant of the mode that is obtained from a particular path of
integration isconsistentvith the path. For example, a modal so-
lution obtained from the path shown in Fig. 3(c) will be physical
if the phase constant is less than that of T, surface wave,
but greater thatk, and also greater than the wavenumber of the
TE, surface wave. More details may be found in [23].

Clearly, the paths can get rather complicated, when all
possibilities are allowed (mathematically valid or not, and
physically valid or not). A systematic way of classifying all
the possible paths is desirable. To aid in the classification,
it is first noted that an arbitrary’,. integration path can be
expressed as the superposition of the following three parts
[22], [23]:

constitute the original path in (a).

In light of the above consideration, the integration paths will
be classified using three indexes, according to the following
scheme.

The first index refers to the number of loops between the
branch points, defined in the sense shown in Fig. 2(b)
(counterclockwise if the proper part of the loop path is
on top). For the example shown in Fig. 2(a), this index
would be+1.

The second index is actually a list, indicating those proper
surface-wave poles that are encircled, in the sense shown
in Fig. 2(b). (The poles in the upper half-plane are en-
circled in the clockwise sense.) For the example shown
in Fig. 2(a), this list would beM,, TE,). An encir-
clement in the counterclockwise sense would be denoted
in this scheme by using a negative sign in front of the
corresponding pole in the list. Multiple encirclements are
denoted with an integer in front of the pole. For example,
an index list that isfTMg, TE;) would indicate that the
TM, pole is encircled twice in the clockwise sense. (The
possibilities of negative or multiple encirclements do not
correspond to mathematically valid paths, but such possi-
bilities are allowed in the classification scheme to main-
tain generality.)

The third index is another list that indicates the improper
poles (leaky-mode poles and improper-real mode poles)
that are encircled. A positive encirclement is again de-
fined by a clockwise integration around the pole for the
pole that is in the upper half-plane. For an improper sur-
face-wave pole with a real phase constant, this uniquely
defines the integration path. For a complex leaky-mode
pole, the situation is slightly more complicated since such
a pole does not have to lie on the hyperbolic continuation
of the branch-cut contour. To illustrate, consider the sit-
uation shown in Fig. 2(b). The leaky-mode pole in the
first quadrant may lie to the right-hand side of the im-
proper part of the loop path or to the left-hand side of it.
If the pole lies to the right-hand side of this part of the
loop path, and below the hyperbolic branch-cut contour,
the classification scheme is the same as for the improper
real modes. If the leaky-mode pole lies above the hyper-
bolic branch-cut contour, the classification scheme is also
the same. If the leaky-mode pole lies to the left-hand side
of the improper part of the loop path, and below the hyper-
bolic branch-cut contour, the integer in front of the name
of the pole in the index is taken to be the number of clock-
wise residue loops around the pole minus one. For the ex-
ample shown in Fig. 2(b), this third index list would be
null since the improper pole is located to the right-hand
side of the improper part of the loop path, with no residue
paths around the pole.
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To illustrate the above classification scheme, the integration (@) Im(k.)
path shown in Fig. 2(a) is denoted@s(1; TM,, TE;;0). That e xm
is, C, comprises the real axis, one counterclockwise loop be- et [ Re(k,)
tween the branch points, circle paths around the poles on the (0-TM.0) sheet x #1
top sheet of thé:.-plane associated with the wavenumbers of o
the TM, and TE; surface-wave modes of the substrate, each Im(k.)
circled once in the clockwise sense, and no circle paths around () #1 " (© # 5
the improper poles associated with th®l; (and the other) im- ~
proper substrate modes. Every point onthd&iemann surface & Re(k,)
corresponds to a particular path of integration in theplane, *v Rek) . \ex 7 C.
which is designated using this classification scheme. 7 ( 7 *5

The above classification scheme was illustrated for the case %
when the poles and branch points are located in the first and
third quadrants (as will be the case for physical leaky-mode dtg. 4. (a) Trajectory in thé . -plane, showing the wavenumbky crossing

; ; ; ; - fhe real axis, moving from points #1 to #2. The wavenumber stays on the sheet
|Utlons)' For nonphy5|cal growing Ieaky modes (Wlth a negatl\%%at corresponds to the integration p&th TM,; 0) in the k. -plane. (b) and

attenugtion constant), the poles and branch p(_)ints will be 1@y integration path&™. in the k. -plane corresponding tb. wavenumbers at
cated in the second and fourth quadrants. In this case, the paithts #1 and #2 in thé. -plane, respectively.

classification is obtained by allowing all the pole and branch

point singularities in thé:,-plane to cross the imaginary axis, (@ 4mk)

and then using the classification scheme as outlined above. This 2
maintains the same path classification when the wavenumber K K T Re(k,)
k. crosses the real axis in thig-plane without crossing any x #1
branch cuts. (1:TM;0) sheet

The same classification scheme used for the paths can then
be used to denote the particular sheet of the Riemann surface ®
that the longitudinal wavenumbér, is on. In Fig. 3, both the
wavenumbers and the paths have been labeled using this clas- Jox
sification scheme. In this scheme, the bound-mode sheet is de- &2

Im(k,)

noted ag0;0; 0).

Ill. DISCUSSION OFMODE SPLITTING Fig. 5. (a) Trajectory in thé . -plane, showing the wavenumbkey crossing

o . . f dal Iuti ith f the real axis, moving from points #1 to #2. The wavenumber stays on the sheet
ne interesting aspect of modal evolution with frequency {Rat corresponds to the integration p&th TM,; 0). (b) and (c) Integration

the mode splitting that typically occurs on a lossless structusghsC,, in thek,-plane corresponding fo. wavenumbers at points #1 and #2
when the solutiork, merges with the conjugate solutidrf, in thek--plane, respectively.
resulting in a pair of improper-real solutions. Knowing when
mode splitting will occur aids in the understanding of the frethe real axis to the right-hand side of ti&1, branch point
guency evolution of thé&, wavenumber. to reach point #2, the branch point and pole in theplane
A necessary condition for mode splitting to occur is that theross the imaginary axis, causing the path to evolve into the one
solution k., must approach the real axis in the-plane. The shown in Fig. 4(c). This path is the conjugate path to the one
wavenumber? is always a valid solution for a lossless strucshown in Fig. 4(b). Hence, if M, surface-wave leaky solution
ture and, hence, bott, andk* must approach the same set opproaches the rel axis at a point to the right-hand side of the
coordinates a%. approaches the real axis. However, this doéEM, branch point in thé . -plane, mode splitting will occur. By
not necessarily mean that thke and%? solutions must evolve similar reasoning, it can be shown that if th&1, surface-wave
into a pair of improper real solutions whén approaches the leaky solution approaches the real axis to the left-hand side of
real axis. This evolution will occur when tlig andk? solutions the TM, branch point, no mode splitting will occur.
meet on theé:, Riemann surface. This, in turn, implies that the Extending the reasoning, the general conclusion is that a
path of integration in thé,-plane for thet, solution must con- leaky mode that leaks into a finite number of surface-wave
tinuously evolve into the path of integration for the solution modes will exhibit mode splitting if thek. wavenumber
as the wavenumbgér, crosses the real axis. The integration pathpproaches the real axis to the right-hand side of all the
for the k% solution is simply the complex conjugate of the patBurface-wave branch points corresponding to the leakage.
used for thek, solution. Hence, mode splitting will occur if the  Next, consider the case of a mode that leaks into both space
integration path changes into the corresponding conjugate patid into theTM, surface wave, corresponding to the path
ask, crosses the real axis on the Riemann surface. (1; TMp; 0). The point labeled #1 in Fig. 5(a) is on the lower
To illustrate this, consider first a leaky-mode solution thatheet of thek, branch point, and corresponds to the path
leaks into only thél'M,, surface wave, corresponding to a patBhown in Fig. 5(b). If point #1 crosses the réal axis to the
(0; TMg;0). For such a leaky-mode solution with located right-hand side of all the branch points, the path evolves into
in the fourth quadrant [point #1 in Fig. 4(a)], the path of théhat shown in Fig. 5(c). This path is not the conjugate to the one
integration is as shown in Fig. 4(b). i, at point #1 crosses shown in Fig. 5(b). Hence, a solution that leaks into space and
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into the TM, surface wave will not encounter mode splitting 3L “
as the solution approaches the ré&alaxis to the right-hand ~‘g i (0;0;0)
side of the branch points. By following similar reasoning, it ..g 26 | TML e
is also seen that a solution that leaks into both space and th¢g o e St
TM, surface wave does not encounter mode splitting when theU 22 ¢ L
solution approaches the real axis to the left-hand side of any ofw s | (1,TM,;0) )
the branch points. Hence, such a mode never encounters modf \ J 0TVL0) o L2
splitting. = 44 N o]
In summary, mode splitting only occurs for a leaky-mode so- § i ) e WEM:"‘;MZ:/TE
lution that leaks only into surface waves, and then only when 8 1 = -
the wavenumbek,. approaches the real axis to the right-hand I
side of all the corresponding branch points. This behavior will %€ 0™ 0 6 16 20 22 24 26 28 30
be observed in the results presented in Section IV. Freq (GHz)

Fig. 6. Normalized phase constants (normalized:pyfor the fundamental
IV. EVOLUTION OF PATHS WITH FREQUENCY bound mode and two leaky modes of a microstrip with= 1.27 mm, w =
4 mm, e, = 10.2. One leaky mode leaks only into tléM, surface-wave

In the preceding sections, the integration paths in thede of the grounded substrate. This mode is obtained by using the integration

k., plane were discussed, and it was shown how the path% (0; TMo; 0). The other leaky m‘ode_ leaks i‘nto space ‘as well as into the
1o surface wave. The corresponding integration pati iSM,; 0).

integration continuously evolves as the wavenunihemoves
on a Riemann surface (which may, for example, correspond to
changing frequency). Also, a discussion of when mode splittiggsociated with th&'E; surface-wave mode are not detoured
may occur as the wavenumbér approaches the real axisaround by the(0; TMy;0) integration path in thek,-plane;
was given. These points will now be illustrated by showingence, this solution violates the PCC and, therefore, loses
results for a practical microstrip line. In addition to illustratingohysical validity in this frequency region.
the above points, the results will show that a continuous The only physical region for thél; TMy; 0) solution is be-
tracking of the wavenumber with frequency may require théween 14.8-18 GHz, wherg < k. It is observed that there
the wavenumbek. crosses the real axis to enter a nonphysicid a frequency range (from 15.2 to 18 GHz) where the phase
“growing” region (the imaginary part of. is positive) during constants of the two leaky modes almost coincide. It might be
part of the frequency range. This leads to new and interestiagsumed that this would be a region of strong coupling between
paths of integration never seen before. Such paths must be ubedtwo leaky modes. However, the two leaky-wave solutions
if the frequency behavior of the leaky mode is to be trackeate on different sheets of the Riemann surface and, furthermore,
continuously over the complete frequency range. only the(1; TMy; 0) solution is physically valid in this region.

Results will be shown for a microstrip line on an isotropi¢ience, the usual mode coupling that occurs as the phase con-
substrate, having the parametérs- 1.27 mm,w = 4 mm and stants of two different modes approach each other is not found
e, = 10.2. This particular structure, with a high permittivityhere.
and a fairly wide strip, is chosen because it illustrates all of the The normalized phase and attenuation constants of the
aspects discussed previously, over a practical frequency ran@eTMy; 0) solution are shown in Fig. 7.
Not every structure will exhibit all of these same effects over It is interesting to note in Fig. 7(b) that, between approx-
a given frequency range. Nevertheless, the general conclusionately 17-18 GHz, the attenuation constan{with k., =
reached by studying this structure are expected to be valid fd— j«) of this mode is negative. Clearly, a “growing” mode
other structures, in the sense of demonstrating what types of patth a positive phase constant and a negative attenuation con-
evolutions may occur as the frequency changes. stantis not physical. Nevertheless, itis important to track the so-

The normalized phase constants/kq) for the funda- lution in this “anomalous” region because after this region, the
mental bound mode and two leaky modes are shown (i TMg;0) solution is once again physically valid according to
Fig. 6. This figure also shows the dispersion curves for tlibe PCC.
first two surface-wave modes of the grounded substrate (forlnsight into the frequency evolution of this mode is provided
frequencies below 19.2 GHz thEE; surface-wave mode is by examining the locus of the wavenumber solution in the
an improper-real mode). The light gray line corresponds tocamplex k. -plane, shown in Fig. 8. It is observed that there
leaky-mode solution that leaks into space and into'iM, is a mode-splitting point at approximately 11.92 GHz when
surface-wave mode [obtained by using pathTM,; 0)]. The the wavenumbers of the two improper real modes meet on
dark gray line corresponds to a leaky-mode solution that leatkee real axis to the right-hand side of they;, branch point
into only the TM, surface-wave mode [corresponding to &k Tn,/ko =~ 1.09 at this frequency). After the splitting point,
path (0; TMg; 0)]. According to the PCC, the dominant bounda complex (0; TMp; 0) solution and its complex conjugate
mode, arising from patij0; 0;0), is physically valid for the emerge perpendicularly. The solution in the fourth quadrant of
entire frequency range. ThH&; TMy; 0) solution is physically the k_-plane travels to the left-hand side of the quadrant until
valid only at those frequencies whetg < [ < ko, it crosses the branch cuts (not shown) on the real axis from
i.e., approximately between 13-14 GHz and also betwebath thek, andkry, branch points at approximately 17 GHz.
18-26.2 GHz. Above 26.2 GHZ} < krg,, but the poles After this crossing, the solution goes to the first quadrant,
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Fig. 8. Locus of thek. wavenumber in the complex.-plane for the . . . .
surface-wave leaky solution between 11-30 GHz. This figure shows tﬁé.om this frequency up to 30 GHz, the solutions remain on this

locus of both the complex leaky-mode solution (black line) and the compl&heet.
conjugate solution (gray line) obtained by using the conjugate integration path.The normalized phase and attenuation plots for the
(1; TMp; 0) solution are shown in Fig. 10. It is again observed
entering the £1; — TMy; TE;) sheet of the Riemann surfacejn Fig. 10(b) that the attenuation constant takes negative values
corresponding to the path-(; —TMy; TE,) in the k,-plane. over the range shown; this time within two different frequency
The path is shown in Fig. 9. (The designation for this path isnges between 18.035-18.375 GHz and 18.845-23.25 GHz.
obtained by first allowing the poles and branch points to cro3$ie locus of the solution in thk,-plane is shown in Fig. 11
the imaginary axis, and then examining the circle paths aroufitde complex conjugate solution is not shown since, as dis-
the poles, as discussed previously in Section Il.) The gray lisassed in the previous section, this solution never merges with
in Fig. 8, corresponding to the locus of the complex conjugatiee original solution to form mode splitting). Fig. 11 shows
solution, begins on the she&6; TM,;0) and crosses the how thek, wavenumber starts in the fourth quadrant on the
branch cuts to enter thid; 0; 0) sheet in the fourth quadrant.sheet that corresponds to thg TMy;0) path and travels in
Therefore, the loci of the original solution and its complethis quadrant until it approaches thg branch point. The
conjugate do not meet at 17 GHz, and there is no splittimgprresponding integration path in the-plane associated with
point at this frequency. This behavior is as expected from thigis excursion in thet.-plane is shown in Fig. 12(a). This
discussion in the previous section. figure also shows the following singularities of the SDGF in
After an small excursion of the solutions on these sheets, thg k..-plane: branch points associated with poles on the top
come back to thé0; TMy; 0) sheet at approximately 18 GHz.(proper) sheet associated with ti&, surface-wave mode,
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mode are crossed because branch points associated with proper
surface-wave modes do not appear on the lower sheet &fthe
branch point, as mentioned previously [23]. After crosses

the real axis at 18.035 GHz, the branch points inZhelane

cross the imaginary axis, while tH&\l, poles on the top sheet

and theTE; poles on the bottom sheet of tlhg-plane cross

the real axis. Afterk. crosses the real axis, the corresponding
integration path in thé,-plane is now that shown in Fig. 12(b),
which is classified as patfi; TMg; —TE;).

It should be noted that as frequency increases e sur-
face-wave mode is approaching its cutoff frequency (19.2 GHz)
and, therefore, th8'E; poles in thek,-plane come close to
the branch points. This will result in an interesting transition
in paths, as seen presently.

At 18.375 GHz, thek, wavenumber again crosses the real
axis and th&'E; branch cut, and moves back to the fourth quad-
rant of thek.-plane in the 1; TMo; 0) sheet, where it stays until
it approaches in an upwards direction the real axis once again
atapproximately 18.845 GHz. Between 18.375-18.845 GHz the
integration path is shown in Fig. 12(c). At 18.845 GHz, Mg,
branch point on the real axis in the-plane has moved suf-
ficiently far to the left-hand side (toward thg branch point)
that it is now located on the real axis to the left-hand side of the
point where thé;., wavenumber is approaching the real axis at
18.845 GHz. This implies that the wavenumber now does not
cross this branch cut and, hence, ig; improper poles cross
the imaginary axis in thé,-plane. Therefore, the path evolves
from that shown in Fig. 12(c) to that shown in Fig. 12(d) as
the frequency increases past 18.845 GHz. The path shown in
Fig. 12(d) is classified a&l; TMo; 0).

The integration path in th&,-plane remains the same until
the cutoff frequency of th&@'E; surface-wave mode is reached
(19.2 GHz), at which point the impropéfE; poles in the
k.-plane coalesce with the branch points and then reemerge
as proper surface-wave poles. As these poles reemerge to
the proper sheet, they cross the improper part of the loop,
adding other residue path contributions that null their previous
improper residue paths. The path is then as shown in Fig. 12(e),
which is classified agl; TMy, TE;;0).

At 23.25 GHz, thék. solution crosses the real axis again, to

Fig. 12. Integration pathg<’, in the k,-plane that are used to track the left-hand side of th&'E:; and'TM, branch points (although

the space+ surface-wave leaky solution in Fig. 11 in the followinghejr corresponding branch cuts are not crossed since they are
frequency regions. (a) Frequencies below 18.035 GHz. (b) Frequencies

between 18.035-18.375 GHz. (c) Frequencies between 18.375-18.845

dipt on the same sheet as the wavenumber). Botl'theand

(d) Frequencies between 18.845-19.2 GHz. (e) Frequencies betwdeNy poles consequently cross the real axis, resulting in the path
19.2-23.25 GHz. (f) Frequencies above 23.25 GHz.

shown in Fig. 12(f), which remains classified as péthITM,,
TEl; 0)

and poles on the bottom (improper) sheet associated with the

below-cutoff TE; surface-wave mode (which is actually an

improper surface-wave mode).
The magnified inset of Fig. 11 shows how, after approaching Many different integration paths are possible in the spectral-
the branch point at,, the wavenumber moves to the first quaddomain analysis of leaky-mode propagation on open printed-
rant (negative value of the attenuation constant) after crossiigouit structures such as microstrip. A classification scheme for
the real axis just to right-hand side &f, at approximately characterizing these paths has been proposed here. Out of all the
18.035 GHz. (The inset sketch in Fig. 12(b) shows where tpessible paths, a certain subset of these paths are mathematically
wavenumber crosses the real axis in relation to the brangdid in the sense that the resulting modal solution satisfies the
points.) As the wavenumber crosses the real axis, it crosseaindary conditions at the strip conductor, as well as Maxwell’s
the branch cut associated with thi&; improper surface-wave equations. A subset of these mathematically valid paths are also
mode. No branch cuts associated with tHel, surface-wave physically valid, yielding modal solutions that are physical in

V. CONCLUSIONS
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the sense that such a leaky-mode solution would be physicallyo]
present to an appreciable degree in the total spectrum of current
that is produced on the line by a practical source.

The complex longitudinal wavenumber plane (fheplane)  [11]
provides insights about the mathematical and physical validity
of the paths. In particular, a mathematically valid path is one that
comes from a continuous evolution of the real-axis path (the onB2]
that is used to obtain bound-mode solutions) as the wavenumber
k. moves continuously on a Riemann surface. A path that is alsp3;)
physically valid is one that satisfies a PCC.

The concept of the Riemann surface for the longitudinal, 4,
wavenumberk. allows for other important conclusions re-
garding the frequency behavior of the wavenumber It
was shown that mode splitting sometimes occurs when thgs;
wavenumber approaches the real axis (where a complex leaky
solution meets a complex conjugate solution, and the tw?le]
solutions split apart as two improper-real solutions). In other
situations, mode splitting does not occur. The use ofihe
Memwmsummewbwsmramemdmndmmenmmksmmmd”]
will occur. It was shown that mode splitting occurs when
the complex leaky-mode solution and its complex conjugatéls]
solution meet on the Riemann surface.

Another interesting use of thie.-plane is to provide insight [19]
into the evolution of the spectral-domain integration paths as
frequency changes. It was shown that a continuous tracking gjg)
the wavenumbek. may require that the wavenumber enter a
nonphysical “growing” region of the complex plane, where the
leaky-mode solution has a negative attenuation constant. Aj21]
though such solutions are completely nonphysical, frequency
regions exhibiting growing behavior may appear between phys-
ical frequency regions, making it necessary to track the solutiore2]
through the nonphysical growing regions if the complete dis-
persion behavior of the line is to be obtained. The tracking of,3
the solution into these nonphysical growing regions gives rise
to new paths of integrations never before observed. [24]
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